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1. INTRODUCTION

One of the objectives of the LIGHT program is to determine the feasibility of replacing gun igniter

systems with lasers. This is expected to increase safety and survivability and to improve the performance

of gun systems. Models of the laser-solid propellant ignition process which can be used to calculate the

initial gun chamber pressurization will help achieve this objective. By comparing model calculations with

results from closed bomb experiments, the ability of (thermal) radiative ignition models to predict the

response of solid propellants to laser irradiation can be evaluated.

Many radiative ignition models are available for evaluation (Kulkarni, Kumar, and Kuo 1982;

Hermance 1984). They are usually classified according to the phase(s) in which the self-accelerating

exothermic reaction(s) associated with the ignition process occurs (i.e., condensed, gas, heterogeneous).

Most models are one dimensional and have ignition criteria based on transient temperature behavior. The

physical and chemical processes which describe the "ignition" mechanism differ even in models of the

same class (Kulkami, Kumar, and Kuo 1982). To compare predictions with experimental data usually

requires numerical solutions of the equations used to describe the details of these processes. Analytic

solutions are possible through use of simplifying assumptions (Williams 1966). Phenomonological ignition

models do not attempt detailed descriptions of the ignition processes, and the corresponding equations,

in some cases (Vilyunov and Zarko 1989; Anderson 1972), have analytic solutions.

It is generally difficult to evaluate radiative ignition models due in part to difficulties of matching the

experimental and model boundary conditions and relating diagnostics and model ignition criteria. In

addition, the physical/optical properties and heat release rates which are required as inputs to the model

are not well known. Laser ignition models may have an additional problem (i.e., describing the details

of the laser energy [thermal and nonthermal] interactions with the propellant and with reaction products).

The initial results of an investigation of laser ignition of some nitrate ester (M9. M30, JA2) and

nitramine composite (XM39, HMX2) solid propellants under ambient conditions will be presented, and

correlations of emission and flamespreading delay measurements with predictions of a phenomonological

radiant ignition model will be discussed.
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2. IGNITION MODEL

The model (referred to as "approximate") is described in Vilyunov and Zarko (1989). It considers

condensed phase (surface) reactions and in-depth energy absorption but neglects energy losses (i.e., those

losses due to surface [film] heat transfer and emission), propellant consumption, and does not consider the

effect of laser interruption (deradiation). The model is one dimensional (semi-infinite solid). It assumes

that flux is continuous and uniform and that energy production can be described by a first-order (global)

surface reaction. The relevant energy equation and boundary conditions used for (transparent) solids are:

T= axc 2  + Qzexp(-E/RT)C_ý~ 1t a 2P

T(x,0 = TO; .T (0,0 - 0; T(-,t) -

OTXT

where q = qoexp(-nx), qo, = transmitted surface flux, n = absorption coefficient, T = temperature, t = time,

x = distance from irradiated surface, TO = ambient temperature, a = thermal diffusivity, p = density, and

c = specific heat. The last term in the energy equation is the Arrhenius global heat release rate during

ignition (E = activation energy, z = first-order pre-exponential factor, and Q = heat of reaction).

The ignition delay (%g) is the sum of (inert) "heat up" (th) and (chemical) induction (tch) times. The

surface temperature (Th) and th are determined by finding the temperature at which the time derivatives

obtained from analytic solution of the energy equations corresponding to inert (radiant) heating (Q = 0)

and to adiabatic (spatially independent) reaction (a = qo = 0) become equal. Th represents the chemical

reaction temperature at which the (specific) rate of chemical energy production equals the radiant energy

absorption (at the surface). th is the time required to reach this temperature. At later times, due to the

Ahrrenius exponential temperature dependence, chemical rates dominate and it is assumed that surface

reaction occurs under adiabatic conditions. The chemical induction time is obtained from the adiabatic

solution and is defined (in this model) as the time (with respect to th) for time derivative to become

infinite. Approximations to these analytic solutions (given in Vilyunov and Zarko 1989) were used to

calculate Th and the corresponding th and %ig as a function of radiant flux. The inert approximation (for

T. and t.) is valid under conditions when characteristic lengths for heat conduction during heat up are

much greater than those for absorption (nyI th >> 1). The adiabatic approximation (for tkh) is valid
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when activation energies are much greater than thermal energies (EIRTh >> 1). For convenience, the

derivation (along with the energy equations and their solutions) of these approximations is shown in the

Appendix. In all calculations, T0 = 298 K, and for all propellants, the following values were used for the

thermophysical properties: a = 0.001 cm 2/s, c = 0.35 cal/g-K, and p = 1.6 g/cm 3. A distinguishing

feature 1 the model is the prediction of a (chemical kinetic-dependent) flux level above which tch << « ,

(i.e., th = tig). This "approximate" theory has been previously used to predict the dependence of "ignition"

delays for secondary explosives (HMX, RDX) on laser flux (Vilyunov and Zarko 1989). Reasonable

success was obtained using experimentally determined values for the input parameters.

3. EXPERIMENTAL

A cw CO2 (10.6 pm) laser (Synrad model No. 51) with variable power (nominal power = 10-100 W)

was used as the ignition source. Power was measured with a thermopile (Coherent Radiation model 201).

The estimated measurement error is ±:10%. The responses of several propellants at different power (flux)

levels and in different gaseous environments have been briefly examined. Data have been obtained for

the following propellants: M9 (homogeneous NC double base), JA2 (homogeneous NC triple base), M30

(composite NC triple base), XM39 (RDX composite), and HMX2 (experimental HMX composite). The

samples were small cylinders approximately 3/16 in long and 0.25 in diameter. The M30 and XM39

samples were cut from grains (perforated with graphite surfaces), and the others were cut from solid

strands. The beam (diameter about 3 mm) was directed horizontally along the propellant axis and covered

approximately 25% of the sample (plane) surface. Pulse lengths were varied from 0.1-15 s. Delays to

emission and flamespreading, denoted by te and tf, were measured from emission traces recorded by a

photomultiplier (300-800 nm response), which viewed the region near the irradiated surface. te represents

the time (from start of irradiation) to detect emission, and tf, which is a more subjective measurement,

represents the time to observe a change in the slope of the emission signal consistent with onset of a

relatively steady state process. This change is assumed to indicate the start of the flamespreading process.

Estimated measurement errors for t. and t1 are ±5% and 15%, respectively. Most measurements were

made in a closed bomb (inside dimensions 3 in diameter by 9 in tall). The location and sensitivity of the

photomultiplier were not changed for these experiments. The bomb has optical access from four sides,

with one containing a ZnSe window for transmitting the 10.6-pm radiation. The bomb was initially filled

with air, nitrogen, or argon. Ambient conditions were room temperature and atmospheric pressure.

An infrared (IR) microscope-spectrometer (Spectra-Tech Plan 40/Matson Polaris) was used to measure

propellant reflectivities and transmittivities at 10.6 pm. Propellant reaction products were analyzed by gas

chromatography and FTIR spectrometry.

3



4. EXPERIMENTAL RESULTS

4.1 Optical Properties. Bouguer's law was used to derive the absorption coefficients from the

dependence of transmittivity on propellant width. This implicitly assumes scattering coefficients <<

absorption coefficients. At present, the absorption coefficients for M9, JA2, and XM39 have been

determined and are 536, 250, and 756 cm- 1, respectively. In the visible region, the transparency of JA2

is much greater than M30 and HMX2. If this is also true at 10.6 prm, then the value of n = 250 cm-1 ,

which has been used for the absorption coefficient of M30 and HMX2 in calculations, will represent a

lower bound. This leads to an upper bound for the calculated ignition delays.

The results of the initial reflectivity measurements indicate that at 10.6 pm all propellants reflect less

than 10%. For comparison with calculations the measured flux values were corrected using a reflectivity

value of 0.08.

4.2 Gas Product Analysis. At present, only a cursory examination of the results from gas analyses

has been made. The major difference between samples from flamespreading and non-flamespreading

experiments, besides concentration levels, appears to be the higher CO/CO 2 ratio for the latter.

4.3 Laser Ignition. The following figures contain photomultiplier records selected to show some of

the complexities occurring during laser ignition experiments, and graphs which compare the emission and

"flamespreading" delays obtained from such records with predictions of the "approximate" ignition model.

For some experiments, "flamespreading" delays (tf) were greater than the laser pulse duration (t,). In such

cases, ti, which is a minimum lower bound for tf, was used for the comparisons. In some cases, data

represent average values of several measurements.

Listed in Table I are the laser power (P), t1, and the corresponding delays (t., tf, td) obtained from the

photomultiplier signals shown in Figures 1, 3, 5, and 7. td is an estimate of the final emission decay time.

4.3.1 Nitrocellulose Propellants. Figure 1 shows the effect of flux levels on emission during ignition

and flamespreading of M9 in nitrogen at ambient conditions. Time is relative to start of the laser

irradiation. The points e, f, and d locate the emission delay, te; "flamespreading" delay, tf (corresponding

to a slope change in the emission-time signal); and final emission decay time, td. Both te and tf

(conceivably related to th and ti$, respectively) decrease as power increases. The M9 emission decay at

dl and d2 is due primarily to consumption of propellant.
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Table 1. Laser Operating Conditions and Delay Measurements for Figures 1, 3, 5, and 7

Figure Signal Power t, te tf td
(W) (s) (s) (s) (s)

1 1 2.5 5.80 0.19 0.30 1.65
2 8.6 1.10 0.03 0.09 1.40

4 1 1.7 4.34 1.93 4.85 4.30
2 8.6 1.67 0.05 (0.12) 1.70

6 - 4.2 2.72 0.04 1.37 3.60

8 1 8.6 0.62 0.18 2.10 0.65
2 8.6 0.20 0.11 - 0.22

ti = laser pulse duration

te = emission delay
tf = flamespreading delays
td = estimate of final emission decay time

20

-i 18
16

14:.

z12 ~~d
0 10 dl6' .. ,.!

f 2; "Tr, ¢•

"LJ 4 ei
2 e

0
-0.5 0.0 0.5 1.0 1.5 2.0TIME (SEC)

Figure 1. Photomultiplier records showing effect of flux level on emission from M9 in N2.
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The lines in Figure 2 are the ignition delays calculated from the model as a function of flux level for

different heat release rates. "N" refers to a rate (given in Vilyunov and Zarko 1989) determined from

radiant (black body) ignition experiments with the Russian double-base propellant N (0.58 NC, 0.28 NG,

and 0.12 DNT), and "M9" refers to a rate determined from shock tube experiments with M9 (0.58 NC,

0.40 NG) powders in nitrogen (T = 600-700 K and pressure = 0.9-3.5 atm) (Cohen and Holmes 1982).

For N and M9, Qz (cal/g-s) = 2.5E16 and 2.6E1 1, respectively. The corresponding values for

E (kcal/mole) are 35 and 22. The rate for N propellant was determined from measurements of delays to

observe a spike in the surface (thermocouple) temperature. The spike signaled the start of a rapid

temperature increase presumably due to flamespreading. The rate for M9 was determined from emission

delay measurements using small (<10 pm) particles uniformly heated (primarily) by conduction from

reflected shock gas.

0.35

0.30 --- M9 SHK TUBE
.. N Rod Ign

0.25 FLAME
U 0.25 - EMITLLJ
Cf) 0.20

<- 0.15

LLU 0.10

0.05

0.00 ' ' ' ' I ' '
0 5 10 15 20 25 30 35 40 45 50

FLUX (CAL/CM2-SEC)
Figure 2. Comparison of emission and flamespreading delays for M9 in N5 with calculations using

heat release rates determined from radiative ignition and shock tube experiments.
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At flux levels >10 cal/cm2-s, (i.e., for calculated delays <0.3 s), differences between the calculated

ignition delays are less than estimated measurement errors (flux ±10%, te ± 5%, and t1 ±15%).

The data are the t, and tf measurements with N2 (in the bomb) initially at ambient conditions.

Considering measurement errors and the uncertainties in thermophysical properties, both t0 and tf appear

to be in reasonable agreement with predictions of the "approximate" model.

Figures 3a, 3b, and 3c show the flux dependence of the tig calculation on the kinetic parameters Qz

and E and the absorption coefficient n. The middle lines correspond to the one calculated for M9 in

Figure 2a (Qz = 2.6E1 1, E = 22, and n = 536). The dependence on kinetic parameters decreases markedly

at higher flux levels (>25 cal/cm2-s). The dependence on n decreases markedly for absorption lengths

(1/n) < 20 p.

Figure 4 (and Table 1) show the effects of flux level and pulse duration on JA2 response to

deradiation. The photomultiplier signals are from experiments in Ar at ambient conditions. The values

of t% and tf decrease with increasing power, similar to the M9 results, but at higher power (and higher

energy) and shorter pulse length, the final emission decay at d2 occurs at laser shutoff, t1 (i.e., deradiation

leads to extinguishment). The only evidence of reaction in the recovered sample is a crater formed

(primarily) in the irradiated region. Emission, in this case, is due to local gasification (laser-assisted

combustion) reaction. At lower power and longer pulse lengths, reaction decelerates at 11 (corresponding

to dl in this figure), but recovers. Self-acceleration leads to the sharp increase in emission at fl which

is assumed to be the start of flamespreading. The subsequent decay (not shown) in emission is the result

of propellant consumption.

The data in Figure 5 are the emission and "flamespreading" delays for JA2 in air and Ar at ambient

conditions. The t1 values were used in place of the tf values for air at 40 and for Ar at 4 ca!/cm2-s. These

t1 values are approximately 10% less than the corresponding h1 measurements. The data at 90 cal/cm 2-s

are from an experiment in room air. All others are from experiments in the bomb. The line is the

calculated M9 ignition delay shown previously in Figure 2. The data near 40 cal/cm2-s suggest that

substitution of air for argon shortens t1 but does not affect t.. The differences between calculation and

measurements are probably within estimated measurement/thermophysical properties errors for % at the

higher flux levels, but the differences are much greater for tf.
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Figure 4. Photomultiplier records showing the effects of power and pulse length on reaction of JA2

in Ar.
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Figure 5. Comparison of emission and flamespreading delays for JA2 in Ar and air with calculations.

9



Figure 6 shows the emission signal during ignition of M30 in room air in which a transition from fizz

(at f) to (visible) flame burning (at g) occurs. This transition has only been observed during irradiation

(laser assisted) and differs from the transition to flamespreading with JA2, (at fl in Figure 3) which occurs

after deradiation. This suggests that absorption of laser radiation by M30 reaction products contributes

to this transition.

30

-J 25

09 20

Z 15
0 d
VI)
(/) 10

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0TIME (sec)

Figure 6. Photomultiplier records showing transition from fizz to flame burning for M30 in air.

The data in Figure 7 are the emission and "flamespreading" delays for M30 in room air and with N2

in the bomb at ambient conditions. The line is the calculated M9 ignition delay. The results suggest that

te values are not greatly different in air or N2, and, except at low flux values, are in reasonable agreement

with the M9 calculations. The tf values (near 35 cal/cm2-s) ar less in air than in nitrogen and are much

greater than calculations.

4.3.2 Nitramine Propellants. Figure 8 (and Table 1) show the effect of pulse length on the response

of XM39 to deradiation. The emission signals are from experiments at fixed power in air initially at

ambient conditions in the bomb. The initial spike in the emission signals may be due to RDX reaction.

The difference in t. values may reflect the stochastic nature of the ignition process. The initial propellant
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Figure 7. Comparison of emission and flamespreading delays for M30 in N2 and air with calculations.
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Figure 8. Photomultiplier records showing the effect of oulse length on reaction of XM39 in air.
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response to deradiation is a sharp decay in emission. With the shorter pulse, reaction stops (at d2), leaving

a crater at the irradiated surface. With the longer pulse, it recovers (at dl) and continues to self-accelerate.

The final emission decay (not shown) is the result of propellant consumption.

The lines in Figure 9 are the calculated ignition delays as a function of flux levels using different heat

release rates for XM39. "DSC" refers to a rate determined from DSC experiments with XM39 (Miller

et al. 1988). In these experiments, the exothermic reaction was preceded by an endothermic reaction. For

the calculations, the heat of the XM39 reaction was taken as the sum of both reactions and the heat release

rate was taken as that of the exotherm. "Tcr" refers to a rate based on DSC experiments with RDX which

was adjusted to give agreement between calculated and measured critical explosion temperatures for RDX

(Rogers 1975). The rate for XM39 was obtained by multiplying the RDX rate by 0.75, which is

approximately the mass fraction of RDX in XM39. The effect of the other constituents on the rate has

been neglected for this calculation. The values of Qz(cal/g-s) for "DSC" and 'Tcr" are 5.46E16 and

5.8E20, respectively. The corresponding values for E (kcal/mole) are 38.2 and 47.1. For flux levels

>1 cal/cm 2-s, the differences between calculations are much less than measurement errors. The data are

t. values for XM39 with air and Ar, and t, (pulse length) values (with air), all at ambient conditions in

the bomb. Flamespreading was observed with air at flux levels >25 cal/cm2, but not with Ar (i.e., infinite

tf). The t, values were approximately 60% of the corresponding t4 values. The tý values for air are in

reasonable agreement with calculations, except at low flux levels. The tf values are probably greater than

calculated ignition delays. Comparison of the results with Ar and air indicates that 02 accelerates the

XM39 reactions responsible for both emission and flamespreading. DSC experiments are with inert

atnospheres. This suggests that the DSC kinetics are not appropriate for XM39 (or RDX) reaction in air.

The observed agreement between te for air and calculations may be fortuitous. It appears that the model

and/or rates do not represent laser-initiated reaction in XM39 (for flux levels <47 cal/cm2-s).

The lines in Figure 10 are the calculated ignition delays for HMX2 as a function of flux levels using

different heat release rates. The line "SHK TUBE" refers to a rate for HMX2 determined from shock tube

experiments with HMX powders in nitrogen (T = 690-740 K and approximate atmospheric pressure).

"Tcr" refers to a rate based on DSC measurements with HMX, which have been adjusted to give

agreement between calculated and measured critical explosion temperatures for HMX. The rates for

HMX2 were obtained by multiplying the HMX rates by 0.8, which is the mass fraction of HMX in

HMX2. The effect of the other constituents on the rate has been neglected for this calculation. The

12
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Figure 9. Comparison of emission and flarespreading delays for XM39 in Ar and air with
calculations using heat release rates determined from DSC and critical temperature
experiments.
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Figure 10. Comparison of emission and flamespreading delays for HMX2 in ,N2 with calculations

using heat release rates determined from shock tube and critical temperature experiments.
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values of Qz (cal/g-s) for "SHK TUBE" and 'Tcr" ame 1.5EI7 and 2.0E22, respectively. The

corresponding values for E (kcal/mole) are 44.3 and 52.7. Calculated delays are noticeably shorter for

the DSC rate at flux levels <20 cal/cmn2-s. The data are the emission and "flamespreading" delays for

HMX2 in the bomb with nitrogen at ambient conditions. The values of t, and tf are much greater than

the calculations, which indicates that the model and/or rates do not represent laser-initiated reaction in

HMX2 (for flux levels <35 cal/cm2-s).

5. COMMENTS

At this stage of the investigation, there is insufficient data to draw many firm conclusions concerning

the modifications of the "approximate" model for use in the LIGHT program. The following are

comments concerning requirements of a "useful" laser ignition model and some conclusions derived from

the data.

1. The comparison of ignition model predictions and experimental delays implicitly assumes that the

delays represent times required for the propellant reactions to generate conditions which satisfy the ignition

criterion. For the "approximate" model, this requires that chemical reaction rates become large (infinite).

At present, the validity of this assumption for either the measured emission delays or "flamespreading"

delays is not known.

2. Although boundary conditions of model (l-D, uniform flux distribution) and experiment (2-D

Gaussian flux distribution) differ, the model (and input parameters) appears to be able to predict M9

response to the CO2 laser irradiation. It appears that both te and tf are in reasonable agreement with model

predictions, although, in principle, the ignition delay is unique. Whi,.h (if any) of the experimental delays

corresponds to the calculated ignition delay and reasons for this dual agreement are, at present, not known.

It also appears that at high flux levels and when using kinetics determined for M9, the model can

reasonably predict the emission delays, but not the "flamespreading" delays of other nitrate ester

propellants. However, the model does not appear to be appropriate for nitramine composite propellants.

3. The decrease in the flux dependence of the calculated ignition delay (for all kinetic rates) as flux

levels increase suggests that precise knowledge of initiation rates will not be critical inputs into models

of flamespreading at high flux levels.

14



4. The substitution of air for inert gases leaves t, values for nitrate ester propelants unchanged, but

shortens tf values. This suggests that reaction of gases (02) affect flamespreading but not initiation.

5. The substitution of Ar for air with XM39 (nitramine) propellant appears to increase t, and tf values.

This suggests that the reaction of gases (02) affect both initiation and flamespreading.

6. The laser-assisted transition from fizz to flame burning with M30 in air (Figure 6) suggests the

possibility that laser absorption by reaction products aids in the transition. Knowledge of absorption

coefficients and concentrations of these products will be required to predict this behavior.

7. Observations of deradiation and ambient gas effects similar to present observations but at higher

pressures (5-20 atm) were reported in an early investigation of radiative ignition of double-base

propellants (DeLuca et al. 1976a). The "approximate" model cannot be used to predict such effects.

These comments emphasize the shortcomings of the "approximate" model and imply that "useful" laser

ignition models (for many propellants) need to include explicitly the effect of gas phase reactions on the

physics of flamespreading.

15



INTENTONALLY LEfl BLANK.

16



6. REFERENCES

Anderson, W. H. Combustion Science and Technologv, vol. 5, pp. 75-81, 1972.

Cohen, A., and L. J. Decker. CPIA Publication 329, vol. 2, p. 469, 1980.

Cohen, A., and H. E. Holmes. "Convective Ignition of Double-Base Propellants." 19th Symposium
(International) on Combustion, p. 691, The Combustion Institute, 1982.

DeLuca, L., T. J. Ohlemiller, L. H. Caveny, and M. Summerfield. "Radiative Ignition of Double-Base
Propellants: I. Some Formulation Effects." AIAA Journal, vol. 14, no. 7, pp. 940-946, 1976a.

DeLuca, L., T. J. Ohlemiller, L. H. Caveny, and M. Summerfield. "Radiative Ignition of Double-Base
Propellants: II. Pre-ignition Events and Source Effects." AIAA Journal, vol. 14, no. 8,
pp. 1111-1117, 1976b.

Hermance, C.E. "Solid-Propellant Ignition Theories and Experiments." Fundamentals ofSolid-Prooellant
Combustion, edited by K. K. Kuo and M. Summerfield, in Progress in Astronautics and Aeronautics,
vol. 90, p. 239, 1984.

Kulkarni, A. K., M. Kumar, and K. K. Kuo. "Review of Solid Propellant Ignition Studies."
AIAA Journal, vol. 20, no. 2, p. 243, February 1982.

Miller, M. S., A. J. Kotlar, A. Cohen, D. L. Puckett, H. E. Holmes, and K. Truong. "Effective Ignition
Kinetics for LOVA Propellant." BRL-MR-3724, U.S. Army Ballistic Research Laboratory, Aberdeen
Proving Ground, MD, December 1988.

Rogers, R. N. Thermochimica Acta, vol. 11, pp. 131-139, 1975.

Vilyunov, V. H., and V. E. Zarko. Ignition of Solids. Elsevier, Amsterdam, The Netherlands, 1989.

Williams, F. A. "Theory of Propellant Ignition by Heterogeneous Reaction." AIAA Journal, vol. 4, no. 8,
August 1966.

17



INTENTIONALLY LEFT BLANK.

18



APPENDIX:

DERIVATION

19



INTENTIONALLY LEFT BLANK.

20



The derivation of the equations for calculating ignition delays from the "approximate" model

(described in reference 4) are reproduced below (with typographical errors corrected).

The energy equations and the initial and boundary conditions for inert heating and adiabatic

reaction are:

aTi a2T! qo

- Q c + " nexp(-nx)

TI(x,O) - TO TI(-,O) = T, 0  (Ot) = 0 (la)

dT . zep( TA (O) _ T, (lb)-it - -c R T ̂

where superscripts I and A refer to inert and adiabatic conditions, respectively. The

corresponding nondimensional equations are obtained using the following:

10T RTa X . =_L, 8 - PO nxa
E a a 'qa

XP Ta 0c
Xa=-/ V , qa= - , ta= = :! exp(1/3), awLx, 'q" X, QZ p c

where the subscript a refers to standard values. The results are given by 2a and 2b

ae 0 + 8p exp(-pt)

01(4,o) = 0o, 0 1(-,t) - oo, (0 I ) - 0 (2a)
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d x +pAO ().0 (2b)

Thfe inert solution is

0 + 28 Cc io (y) - _8exp (- p +

p (3a)

exp (y 2 [eXp(W2)0(W) + eXp(v2*,(v)I

where

y ~ W -z - y, V = Z+ y ,Z

0(u) 0 - (u) , *(u) =2... f e-1 dt . jo(u) e - z4 (U)

The adiabatic solution is

[F xI - F(x)I (3b)

where

Xk { p[l + pAC,] F(ui) -E i(u) -exp(u)

U

Ei(u) = .. dt

for -0

01(oAT) - 00 + 2...~ 8z + [exp (Z2)0(z) -Ii (4a)
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8p exp (z 2) "(z) (5a)

The inert heating time (tQ) and the corresponding surface temperature (Th) are obtained from the

"approximate" model assumptions, i.e., for • = o and "T = th, where rti = ti/ta

0V (0,,E) = OA (0) (6a)

av (o, .-)) (7a)

let Ta = Th

8' (0, Th) = 0 (6b)

from (6a) 0A(0 ) = 0 (6c)

from (2b) dA(O) = I (2c)

from (7a) I (7b)

from (4a) and (6b)

0o 10l 2 Szh 6[ 2
- 00 = 100 + exp(zh) *(Zh) - 1 where zh = p (4b)

from (5a) and (7b) I - 8p exp (zh) **(z) (5b)

for u >> I exp(u 2). 0(u) :V/'-'-I.i_ •J (5c)

assume: zh >> 1, p2 100o >> I
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using (5c), (4b), and (5b)

2z - r -
2 I 0 (8)

solution of (8) gives

2 10 2" je4. (9)

The equation used to solve for Th is obtained from (9) and (5b):

- + 1 (10)

The dimensional form of (10) is quadratic in exp(E/RTh). Real values for Th are given by

exp(E/RT.) = it .PQZ(Th - Td + 1+ 2(11)2o n(Th - o

Th is obtained by numerical solution of (11).

t, is calculated using Th = Ta and th is then obtained from (9).

The chemical induction time (tch) is obtained using the ignition criterion d0 = and (3b) in whichdr
is replaced by c - "h:

Cp [F(x)-F(x)] (3c)
13 2exp(143)

where

X, - {13[ + p0OA(.• k -
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for I I + 2

then

F(u)-- exp(u) + 2

U2 U)

assume
S<< 1, >> X, X >>

then (3c) can be written as

r- r'-(1 +- ) _21) (3d)

for TI = 'Ch

for r = Tig m =oo wherez -2s andt=ignitiondelay

tta

from (3d) ch = 'ig - 'Ch = 1 + 20 where Tch = t-- " "
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